NASA TN D-1652

NASA TN D-1652

TECHNICAL NOTE

ORBITS RETURNING FROM THE MOON TO A SPECIFIED

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

D-1652

GEOGRAPHIC LANDING AREA
By Luigi S, Cicolani

Ames Research Center
Moffett Field, Calif.

M5 /5322
Eoator—)

April 1963

L







TABLE OF CONTENTS

SUMMARY .

INTRODUCTION

SYMBOLS .

AWALYSIS .« . « .« + .
Method of Solutio
Ceometrical Considerations
Dynamics

RESULTS AND DISCUSSION . . . . . .
Times of Landing and Flight Time
Entry Range Requirements .o

CONCLUSIONS .

APPENDIX 4 - LANDING TIMES OF INTEREST

APPENDIX B - ORBITAL FLIGHT TIME FCRMULAS .

APPENDIX C - VARIATION OF LANDING TIME WITH TIME OF DEPARTING THE MOON

FOR FIXED INCLINATION .

REFERENCES

FIGURES .






NATTONAL AFRONAUTICS AND SPACE ADMINISTRATTION

TECHNICAL NOTE D-1652

ORBITS RETURNING FROM THE MOON TO A SPECIFIED
GEOGRAPHIC LANDING AREA

By Luigi S. Cicolani

SUMMARY ~pt

/L 5
P2
This paper develops a method of computing approximate trajectories returning
from the Moon to a fixed landing site. The gravitational field of a spherical
Earth is assumed to govern orbital motion and the entry phase of the trajectories
is described by a linear relation between entry range and flight time in the
atmosphere.

As an example, data were computed for trajectories returning to Edwards Air
Force Base during the month of February 1960 and an analysis of these data is
presented.

INTRODUCTION

Return from the Moon to Earth is the last major phase of a successful manned
lunar mission. Many of the phases in the mission impose trajectory constraints;
for example, constraints that result from launch site and launch azimuth restric-
tions, boost vehicle operations, tracking considerations, operations in the
vicinity of the Moon, lighting conditions at various points in the mission, etc.

The return phase also imposes an important trajectory constraint that arises
from the need for control over the terrestrial landing area. One possible inter-
pretation of this control problem is to restrict operations to trajectories that
return to a fixed landing site. The literature has included substantial contri-
butions to the midcourse guidance (e.g., ref. 1) and entry phases (e.g., ref. 2)
of the return but has tended to ignore the analysis of satisfactory return tra-
jectories. The present work investigates trajectories which return from the Moon
to a fixed landing site on the Earth but are otherwise unrestricted.

A large amount of data is required to determine the effects of the many
variables in the problem so that a rapid and reasonably accurate method of find-
ing return trajectories is necessary. The method of solution described in the
text follows the general approach of references 3 and 4, in which orbital motion
is described by the two-body approximation; that is, multibody effects are
neglected and only the gravitational field of a spherical Earth is considered.



The accuracy of the solutions obtained by this approximation is such that when

ty are entered In an n-body numerical integration
rogran and integrated backwards in time to the Moon, the trajectory
surface of the Moon.
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Data werc obtained with a view to developing an understanding of the general
natiire o' return trajectories and to establishing the effects of the variables in
the provlem. The data presented largely concern trajectories landing at Edwards
Alr Force Base during February 1965, but are typical of other landing sites in th
Soutiwestern United States and other time periods, and illustrate the general
nature of return trajectories.

SYMBOLS
Ar azimuth, measured from local North
D declination
e orbital eccentricity

I, I eccentric anomaly for ellipses and hyperbolas
I orbital plane inclination angle

INT trmmeation Tunction

R distance [rom Larth's center
RA right ascension, measured from the {irst point of Aries
T Tine

(Time is given in mean solar units. Calendar date is given in
Greenwich mean solar time unless otherwise specified.)

TF Tlight time

T, time ol landing

T time oi launch from the Moon

vV speed

Y7 inertial coordinate frame

g orbital true anomaly from vacuum perigee
e true anomaly of entry point



P entry range angle

by gravitational constant, 398013.50 km®/sec®

£ in-plane angle from the nearest ascending node
A geocentric angle, Moon to landing

b4 equatorial angle from the nearest ascending node
LY equatorial angle, Moon to landing

( )7, conditions at landing
( )y conditions at the Moon
( )P conditions at vacuum perigee
() vector
D - .
() desired value

(") time derivative

ANATYSIS

Method of Solution

The problem is to compute those trajectories which return from a point in
the Earth-Moon system and allow a vehicle to land at a specified site on the
FBarth. The point in space is specified by its position, R, and the time of
departure, T, and the landing site, by its right ascension at some reference time
and its geographic latitude.

The method of solution can be divided into two steps: First, by choosing
the azimuth at landing it is possible to compute from geometrical considerations
the required total geocentric angle in the plane of motion from the point of
departure to the landing site, and the required time of landing and corresponding
total flight time. The dynamics of the return trajectory fall into two regimes,
an orbital phase and an entry phase. The second step reguires an iterative pro-
cedure to Tind the combined entry trajectory and Keplerian orbit which match the
required flight time and geocentric angle cormputed from the first step. This
results in the solution orbit and the required atmosphere entry range.



Geometrical Considerations

Total geocentric angle.- The return trajectory will be in a single plane as
a result of the assumption of Keplerian orbital motion. It will therefore be
uselul to consider first the geometry associated with the intersection of an
orbital plane with the celestial sphere, as shown in Tigure 1 where X, Y, 2
form the usual inertial coordinate frame centered at the Earth. For any point or
this intersection the angles Ay (azimuth), D (declination), ¥ (equatorial angle
from the ascending node), RA (right ascension), and £ (in-plane angle from the
ascending node) are defined.

The orbital plane inclination angle, I, is the angle between the North Pole
and the normal to the orbital plane, where the normal is taken in the positive
direction of orbital angular velocity. Only easterly orbits (i.e., orbital
motion from west to east with respect to the Earth) will be considered, for whict
the inclination angle and azimuth are restricted to the ranges 0 < I < x/2 and

0 <Ay < 7.

some convenient relatlons among the angles are

cos I = cos D sin Ay, (1a’
sin ¥ = tan D/tan I (1b’
cos ¥ = cos Ay/sin I (1c’
cos £ = cos ¥ cos D (14
sin £ = sin D/sin I (1e’

The total geocentric angle can be determined after obtaining the angles
assoc’ated with two points on the orbital track. These points are to be speci~
tfied by their declinations, D, (the landing site latitude) and Dy (the declina-
tion of the Moon at the time of departure). The necessary relations result from
application of equations (1) first at the landing site and then at the Moon.

The free choice of one of the geometrical parameters other than Dr, and Dy
is available; for example, entry range angle, orbital true anomaly (or orbital
energy), inclination angle, etc. The choice is a matter of convenience to the
purpose of the computations and in the present case the method of solution will
be formulated with the azimuth at landing, Ayy, as the independent parameter.
This fixes thesinclination angle through use of equation (la). Vehicles on
trajectories having the same landing azimuth will approach the landing site from
the same direction and will have nearly identical tracks over the rotating Earth
in the final phase of the return.

The orbital plane inclination and equatorial angle of the landing site are
computed from equations (1) applied at the landing site.



cos I = cos D, sin Ayy,
0<Ic<nr/? (2)

sin ¥7, = tan DL/tan I
cos ¥1, = cos AZL/sin I

The first of these equations, which relates inclination at landing to the azimuth
angle, is plotted in figure 2(a) for landings at Edwards AFB (Dy, = 36.9%). In
general, the inclination angle cannot be less than the maximum reguired declina-
tion on the orbit, which in this case is the latitude of Edwards. The decliha-
tion of the Moon, plotted in figure 2(b) for the month of February 1966, can vary
between 28.5° North and 28.5° South over a month. A minimum inclination orbit
will have a due East heading at landing and polar orbits wili refer to those with

zero landing azimuth.

The same equations are now applied at the Moon, giving:

sin Apy = cos I/cos Dy
sin ¥y = tan Dy/tan I (3)
cos ¥y = cos Azm/sin I

The Tirst equation gives two values of the heading angle at the Moon for the gilven
values of I and Dy, and the two corresponding values of VY are obtained Irom
the remaining two equations. Geometrically, these two sets of angles correspond
to the two points on the orbital track of figure 1 which have the specified lunar
declination, Dy. The procedure that follows is the same for either cet of angles.

Finally, the total geocentric angle from the Moon to the landing site,
Er, - &y, can be computed from the following equation, obtained by cubstitutions o
equations (2) and (3) in equations (1d) and (le).

cos At = cos Dy cos D, cos AY + sin Dy sin Dy (h)
AE = éL = EM
N =¥ - Iy

To obtain the correct guadrant for the geocentric angle, it should be noted that
sin Af and sin AY have the same sign.

The relations among the various angles are summarized in [Tigures 2(c) and
E(d), which show Af vs. Dy for various values of AY and landing azimuth. The
geocentric angle, At, 1s given only in the range from n to 2r. This is the only
range of interest in the present case because of restrictions on the orbital true
anomaly and atmosphere entry range.

Times of landing and flight times.- Once the landing azimuth, Dr, and Dy are
specified, the angles, I, Ayy, &Y, and AE can be computed as In the preceding
section. The orbital plane can next be located Inertially, since its Inclination
is known and it must pass through the Moon's position at the specified time of
departure with the correct heading (fig. 3). The required inertial direction of
the landing site at the time of landing is then located. Since the landing site




occnples a given inertial direction on its track once each sidereal day, tle
Landing times and corresponding [light times can be found.

The eguatorial angle east Irom the Moon at the time of departure to the
randing site at the tine of landing is the difference in right ascension ol these
two Tnertial directions; that isa,

RAT, - RAy = ¥y, - ¥y

ot 0

axnd the right ascension of the landing site is
RAp = Riy + Y (5)

The times at which the landing site has this value of right ascension are given

RAT, - RArp
T

. i . - -
T (1) = o7 1= .. -2, -1,0, 1,2, ... ()

21{{).;
Here, time is measwed in mean solar days and is related to sidereal time by the
factor w = 1.0027379 sidereal days per mean solar day. Time may be taken as
zero at any convenient Greenwich calendar date and RArp 1s the right ascension
of the landing site at that reference time. A convenient relation for the ref-
erence right ascension is

where RApg s the right ascension of Greenwich at the reference time and 17,

is the east longitude of the landing site. TIinally, the required total flight

time for any value of "i" is

o

TR(1) = Tr (1) - Ty (7)

Dguation () only specifies the times at which the landing site has the desired
inertial position, which occurs once every sidereal day, that 15, once for each
value o' "i." Only some of these times are of interest owing to obvious restric-
tions on the flight time from the Moon to the Earth. Except Tor orbits that
leave the Moon heading away [rom the Earth, the maximum Flight time 1o given by
the tralectory Tor which the Moon's position 1s at apogee. In this case the
orbital flight time ic

3
Rp + Ry
T - _P_Li> 1= 5 aays
N 2 Hpe

where
Rp = 0,430 km = safe entry vacuum perigee
Ry = 374,000 km = mean lunar distance

This estimate of the maximum flight time of interest neglects the entry flight
time, which is comparatively small. Although it is theoretically possible to
compute orbits of zero light time, energy considerations place a praciical lower
limit on flight times (cf. Tig. k(a)). The limits used in this y were taken
as L.% and 5 days. In general, if the Tlight times of interest are in the range

Tmin < TF < Tyax



then the values of i of interest in equation (0) are given by

\

imin S 1 < ipax (i an integer)
RA; - RA
. L L0 ¢
lmin = 1.0 + INT [(})(TI‘I + Tmin) ——"é‘;*‘—‘—'} % ()
RA; - RA

. L LO
imgx = INT [w<TM * Tiax) - 2n }

J

The derivatlon of this result is given in appendix A. The function TT (i)

simply truncates v to the next lower integer; Tfor example, INT(3.2) = 3.
Dynamics

The retura trajectory must be separated into two phases: orbital and entry.
The required total Tlight time and geocentric angle of the return trajectory are
given by equations (4) and (7) and the complete solution is given by that combi-
nation of orbital motion and entry maneuver which matches both constraints; that
is, the combination which satisfies the equations

TF, - /IF + TFp = TFD (92)
9 - 20+ = AED (9b)

where the varicus quantities are

TFo orbital flight time, Moon to wvacuum

perigee Entry

TFE entry flight time, atmosphere entry to
landling

perigee

400,000t

h=

ATF orbital flight time, atmosphere entry
to vacuum perigee

0 orbital true anomaly, Moon to vacuum
perigee

) entry range angle

JAYe] true anomaly of entry location

Sketch (a).- Entry phase parameters.

The quantities, TFP and AgD, are the desired values of Tlight time and
geocentric angle obtained from equations (7) and (1).
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Entry phase.- The entry phase begins when the vehicle 1s at an altitude of
L00,000 feet (6,500 km) and terminates at landing. Vacuum perigee of the return
orbits was fixed at 6,430 km, the middle of the entry corridor, in order to
obtain suitable entry conditions.t With this value of vacuum perigee the flight-
path angle at entry is very nearly Tfixed at —B.OO for all trajectories returning
from the Moon with flight times in the range of interest. Further, the true
anomaly, A9, from entry to vacuum perigee is nearly fixed at 12.0° with a
corresponding orbital flight time, TF, of 122 seconds.

A relation between entry flight time and entry range is necessary. Work on
entry from circular orbits (refs. 5 and &) has indicated a linear relation betweer
these two parameters, and an unpublished study which extends the work of refer-
ence & to entry from parabolic orbits indicates a satisfactory linear approxima-
tion of the relation between entry range and entry flight time. The data of this
unpublished study were obtained in both variable and fixed L/D skipping entry
flight paths for Apollo type vehicles, and provide, to within about one minute,
the following linear relation:

TFp = 0.00933 ¢ + 0.00254 (10)

valid approximately for all entry trajectories of interest. In equation (10)

TFp and ¢ are taken in days and radians, respectively. The solution to the prob-
lem is relatively insensitive to any errors in the approximation to entry charac-
teristics given by equation (10) bvecause entry flight times are small compared to
the total flight time from the Moon; for example, an entry range of 10,000 nauti-
cal miles requires about 43 minutes flight time. In the present work, upper and
lower limits were placed on entry range, namely, 1,000 and 10,000 nautical miles
or range angle limits of 16.6% to 100,29, The possibility of establishing a
parking orbit after skip-out and the effects of lateral range control were not
considered.

Orbital flight time.- Flight time from the Moon to vacuum perigee as a
function of true anomaly is readily computed from the equations describing
Keplerian orbits (cf. fig. 4(b)). The form of these equations found convenient
for the computer program used in obtaining the numerical results of this paper is
given in appendix B.

Remarks on the solution of equations (9).- Equations (9) must be solved
simultaneously and, because Kepler's equation for orbital flight time 1s transcen-
dental, an iterative procedure is required. One way to do this is to vary the
entry range angle, @, computing the true ancomaly from (%) in each case. The
ortital flight time and entry meneuver times are then found from eguations (10)

and (B5) to (B9). This is done until some value of
TFe(d)+ TR (8)-ATF ¢ 1is found that satisfies equation (9a) also; that
is, it 1s necessary to find the intersection of the
two curves in sketch (b).

TF TF?

In programming the above process of solution
¢ some caution is necessary. There are limits on the
Sketeh (b). true anomaly for orbits having a given value of

1The solution is insensitive to choice of altitude within the entry corridor.
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perigee radius and passing through some other required range, in this case, the
distance to the Moon. Values of true anomaly cutside these limits cannot be
used in the equations of appendix B. The limits are:

The lower value is the minimum possible true anomaly, corresponding to an orbit

of infinite energy, and the upper limit eliminates consideration of orbits which
depart the Moon heading away from the Earth and corresponds to a flight time of

about 5 days. These limits can be combined with equation (92) to obtain corre-

sponding limits on the value of ¢ that may be used in the search for the solu-
tion once At has been calculated:

. /R
AtD -+ 12% <9 < P - cos™? <§§> + 12

In addition, limits on the entry range capability of the vehicle have been
assumed, which mey be combined with the azbove limits to give

(10.° )

¢ . = whichever is larger

i S R e
\
F (11)

(-
166.2°

o = Re whichever is smaller

mex reD L ocosT <;E> ¢ 12°

Ry v

In the process of searching for a solution, the angle © may be varied between
the limits given by equation (11). Outside this region, either the entry range
angle would exceed the assumed vehicle capability, or the true anomaly would be
>utside the region for which orbits returning from the Moon are possible or have
flight times less than 5 days.

A second consideration is that the existence of a solution (that is, the
sceurrence of an intersection as in sketch (b)) must Tirst be checked before
searching for a solution. As is evident in the sketch, a solution exists only if
the required flight time, TFD, is bracketed by the flight times corresponding to
the limits in entry range angle given by equations (11) above; that is, only if
+12°%) + TFg(o +12%)

TF, (287 ) > TFD + ATF > TR (AP

- (i . . -
len min @max

+ TFE(mmaX)

Once the values of ¢, 3, and TF are determined, the solution is defined
aind any other parameter of interest can be generated, for example, entry vnosi-
tion, entry speed, eccentricity, etc.

Except for details, the method of solution described above is common to
>ther problem areas in the lunar mission. To compute approximate trajectories
launched from a specified site on the Farth to arrive at the Moon, the equaticns
;overning atmosphere entry are replaced by those describing a boost and parking



orbit phase. The problem of aborts to a specified landing site from midcourse
points on a lunar mission (ref. L) may also be investigated by similar methods.

RESULTS AND DISCUSSION

The method of solution described above was programmed for use on a digital
computer and results were obtained for trajectories returning from the Moon dur-
ing February 1966 to Edwards AFB. The Moon's time history of position was taken
from the Naval Observatory ephemerides tapes. The trends obtained are determined
largely by the latitude of the landing site, rather than its longitude, and are
therefore typlcal of landing sites near 35 latitude.

For purposes of the following discussion, the time of leaving the Moon, Ty,
is associated with the time of injection onto a refturn orbit. However, the event
assoclated with Ty 1is, strictly speaking, undefined since the computations
neglected the presence of the Moon.

Times of Landing and Flight Time

The times of landing for lunar launches during the first half of February
1966 are given in figure 5. The landing times fall into rather narrow bands; the
lower line of each band is given by orbits with a landing azimuth of 5  from
North (nearly polar orbits), and the upper line by orbits having an easterly head-
ing at landing (minimum inclination orbits). The width of the bands varies from
3 to & hours during the month, but could be extended to 12 hours in every case by
considering the complete range of landing azimuth from OO to 180 However, land-
ing at Edwards at azimuths above 900 will require entry ranges in excess of 10, 00(
nautical miles for launches from the Moon over some portion of the month.

For a fixed time of departing from the Moon and a particular value of landing
azimuth there may be three or four discrete landing times. For example, the fol-
lowing landing times occur for a lunar launch on February 8 on minimum inclinatior
orbits:

Ty = O hr 8 Feb.; Agp = 90°

Landing time Flight time
5.31 hr 10 Feb. 2.2211 days
5.24 hr 11 Feb. 3.218% days

5.18 nr 12 Feb. 4.2157 days

There are three minimum inclination orbits into which the vehicle may launch at
this time. The landing times correspond to the several times at which the landing
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site occupies the correct inertial position, as in equation (0), and for which
the dynamics (egs. (9)) can be satisfied. These times are therelore one sidereal
day apart and the corresponding flight times differ by a sidereal day.

If the time of launching from the lMoon is varied, there is very iittle
change in the time of landing Tfor return orbits of the same inclination, for
example:

Agy, = 90°
Lunar launch time Landing time Flight time
0 hr 2 Feb. 15.90 hr & Feb. L.7042 days
0 hr 3 Feb. 17.90 hr ¢ Feb. 3.7h485 days
0 hr L Feb. 19.00 hr £\ Feb. 2.7940 days
0 hr 5 Feb. 20.13 hr & Feb. 1.8389 days

A change in landing time of 3.23 hours occurs for a delay in launch time of 3
days. Thus, any launch delay may be taken up almost entirely by a corresponding
reduction in Ilight time.

The source of this behavior is the slow angular motion of the Moon compared
to the angular motion of the landing site. This can be recognized from the
sketch of the celestial sphere, sketch (c).

The orbital tracks of two orbits having the North

came inclination are shown leaving the Moon i

at two different times one day apart. The
angular motion of the Moon in its orbit is
sbout 13 per day so that the Moon takes a
full day to move from the position My to
Ms. The Barth, however, rotates 157 per
hour so that less than one hour is needed
“or the landing site to move from TLp, i1ts
required inertial position when the Moon is
at M;, to Ls. The net result is that the
landing time changes about l/}Oth as rap-
idly as the time of departing Irom the Moon.
This result can also be derived mathemati-
cally and a general formula 1s reported in
appendix C.

Landing site

There is, therefore, no launch-time
problem for departing from the Moon to Sketch (c).- Celestial sphere.
return to a specified landing site and
launch can take place at any time provided the required variation in flight time
is acceptable. Figure ) shows the flight time for launches from the Moon during
the Tirst half of February into minimum inclination orbits. Launch at any time
requires that flight time variations up to one day be acceptable, but it 1s pos-
sible to choose the one day period of variation arbitrarily (e.g., 2.5 to 3.5 day
orbits). In this case, i the planned launch time required a 3.5-day orbit, then
any launch delay would be taken up by a corresponding reduction in flight time,

11



antil, after a delay of one day, the flight time was reduced to 2.5 days. During
this period, the corresponding landing time would remain almost Tixed and the
vehicle would st1ll arvive at the Janding site at the same time. Any further
delay in launch, however, would return the required flight time to 3.5 days and
the corresponding landing time would change by one day by passing tc the next
curve in figure v. In this way, it is possible to operate over the entire month
with a flight time variation of no more than one day.

IT a single value of [llight time is required, it is possible to launch only
once each day. For example, if the required fligat time is three days, then
launeh can take place only at about L a.m., Feb. 3, Lk, 5, etc., for minimum
inclination retwrn orbits. If it is necessary that the launch occur when the
Moon is in view of some particular station on Earth, then launch would be
restricted to a short period of the day and the return flight time would be
specilied from figure .

Over the period of a month the possible landing times occur during a chort
period once each day, so that a requirement that the vehicle land at a particula:
time of day will restrict the time of the month during which return from the Moor
may take place. The time of day at landing for the month of February is given ir
figwre 7. Curves for minimum and near-polar inclination are given; intermediate
inclinations gilve intermediate curves in the chaded area. For example, if it is
reguired to land at © a.m. on a minimum inclination orbit, then the time of lunax
launch 1s resiricted to noon on Feb. 21.

The variation of flight time with landing azimuth is given in figure & for
several launch times during the month. Alternatively, the difference in flight
time between minimum inclination and near-polar orbits may be taken directly fror
Tigure 7 as the difference in times of landing, which varies from 3 to 8 hours
during the month. In general, the required flight time increases with landing
azimuth; that is, 1t 1s less for polar orbits of zero landing azimuth than for
minimun inclination orbits.

The entry speed varies with the flight time and the distance to the Moon.
Figure 4(a) gives the vacuum perigee speed versus flight time for the minimum anc
maximum values of the lunar distance. For any given distance to the Moon, lower
I'light times correspond to higher energy trajectories. Polar return orbits have
slightly greater energles than minimum inclination orbits and will therefore have
slightly higher speeds both at entry and at departure from the Moon.

The higher speeds required on polar orbits at departure from the Moon are o:
some interest since they will occasion an increase in fuel requirements for
injection intc the return orbit. To illustrate the size of the penalty involved
some precision trajectories were obtained which depart from an altitude of 266 ki
above the Moon at a point behind the Moon on the Earth-Moon line. The speed wit)
respect to the Moon at departure for various inclination angles is given in the
right-hand column of the following table:

12



Ty = 12 hr; 1 February 1966

I, TF, Vp, Vy (Lunar injection
deg days km/sec speed), km/sec
3.9 2.506 11.0834 2.5296
39.5  2.402  11.0913 2.5678
51.2 2.310 11.0958 2.61k46
65.0 2.2k2  11.1063 2.6629
85.0 2.17%  11.1141 2.7229

The nearly polar orbit requires a departure speed 193.3 m/sec greater than
that of the minimum inclination orbit. The differences in flight time and vacuum
perigee speed are 8 hours and 30.7 m/sec, respectively. However, only a part of
the difference in departure speed is due to the higher energy of the polar orbit.
The major part is due to kinematic considerations. Trajectories with the same
flight time have the same energy with respect to the Earth whatever the inclina-
tion. Their energy with respect to the Moon varies, however, with inclination
because of the motion of the Moon with respect to the Earth. Vehicles which
return in the Moon's orbital plane may take advantage of the Moon's velocity in
order to obtain the required energy with respect to the Earth, but vehilcles
returning in orbits that are polar to the Moon's orbital plane must remove this
component of velocity. The result is that among orbits with respect to the Earth
that have the same energy, the polar orbits require a higher velocity with respect
to the Moon and, conseguently, greater maneuver fuel costs in the vieinity of the
Moon than orbits that lie closer to the Moon's orbital plane.

Entry Range Requirements

The entry range reguirements for minimum and near-polar inclinations are
given in figures 9(a) and 9(b) for the entire month of February. Each curve in
these figures corresponds to one of the fixed azimuth lines of figure 5 and there-
fore to e very nearly fixed time of landing. Flight times of 4 days and 2 days
are associated with the left and right end points, respectively, of each curve in
the figures.

Both figures show a general monthly variation in the required entry range
which parallels the variation in lunar declination; that 1s, the entry range
decreases during the first half of the month when the Moon's declination decreases
(ef. fig. 2(b)), and increases during the second half of the month with the lunar
declination. This behavior stems from the geometry of the problem; the total
geocentric angle, Af, from Moon to landing site increases with the declination of
the Moon. In figure 2(d) in the region of possible lunar declinations, from
-28.57 to +28.57, it is seen that the angle, Af, increases with the declination
for every value of landing azimuth. The total geocentric angle is made up of the
orbital true anocmaly and the entry range angle, as in equation (9b);

reD =g -12% + o
Consider next trajectories of fixed flight time and, hence, of [ixed true anomaly .

In this case, as DM increases the angle, Af, increases, and, by the above
equation, the entry range angle, ¢, must also increase.



Thie argument 1s not entirely correct since, for a fixed landing arimuth,
the retirn light time and corresponding true anomaly have a daily variation as
in figure ©. But, since it is possible to have a fixed value of flight time once
each day, the argument is correct from day to day and therefore a general trend
must occur in which the required entry range varies with the lunar declination as
observed in figures 9(&) and 9(b).

The variation of entry range with lunar declination also depends on the
latitude of the landing site. The trend noted above ig correct for landing sites
in the northern hemisphere above the maximum declination of the Moon and therefore
applies to typical sites in the Southwest United States. Tor landing sites in
the sonthern hemisphere below the minimum declination of the Moon the trend is
opposite; that is, the angle, At, decreases with increasing lunar declination and
the entry range is less alt northerly declinations of the Moon than at southerly
declinations. Such a case is illustrated in figure 10(a) which gives the entry
range requirements for minimum inclination returns to Woomera, Australia (—31.&0
lat., 1:6.9° long.).

Figuwe 9(a) indicates that a return to Edwards AFB at any time of the month
with minimum inclination orbits requires entry ranges from 3,000 to 9,500 nau-
tical miles. If the entry range capability of the vehicle is much less than
9,500 nautical miles there are several alternatives. The return from the Moon
could be restricted to that portion of the month for which the entry range
reguirements are within the capability of the vehicle; in the case of landing
sites in the Southwest United States, this would correspond to times when the
Moon is at negative declinations. However, operation over the entire month can
be restored by having two landing sites; a second site at southern latitudes
would have low entry range requirements for positive lunar declinations
(rig. 10(a)). A second landing site could also be placed part way along the
entry track for minimum inclination returns to Edwards AFB. Such a case is
illustrated in figure 10(b) for landings at 20.20 latitude, 189.80 east longitude,
in the area west of Hawaii about 3,200 nautical miles from Edwards. The entry
range requirements are about 3,000 miles less than for Edgards but there is a
portion of the month when the Moon is near or below -20.2° latitude during which
no return solutions occur.

It is evident that the use of a fixed landing site requires a varying entry
range for operations at any time of the month. The use of two or more fixed
landing sites allows the amount of variation to be reduced. TIf this procedure is
extended to the limit, that is, if a mobile landing area is used, then the
required entry range can be held fixed. However, an investigation of this alter-
native method of landing area restriction is beyond the scope of the present work.

Another alternative is to use polar return trajectories for which the entry
range requirements are substantially less than those for minimum inclination
return orbits. The requirements for nearly polar return to Edwards are given in
Tigure Q(b), which indicates an entry range capability of 1,500 to 5,000 nautical
miles is necessary, or, roughly, half of the entry range capability required for
minimum inclination orbits, for example,



Declination Entry range,

Time of launch of the Moon Inclination nautical miles

O hr 3 Feb. 26.1° 34.9° 9500
85.9° 5500

o P

O hr 9 Feb. 1.0 3L.90 45550

85.9° 3275
- .o

O hr 10 Feb. -20.2 34,99 3500

85,90 1680

A general trend 1s illustrated by the above table; entry range requirements
increase with increasing landing azimuth. The reasons for this behavior can be
determined from sketch (d) which shows the
superlunar point on the celestial sphere z
together with the tracks of return trajec-
tories having various landing azimuths
from OO to 180°. The superlunar point is
180° from the direction of the Moon at the
time of departure and has a declination of
-Dy. Once the time of departure from the
Moon is specified, the superlunar point is
fixed inertially and all the return tra-
jectories must pass through it. The land-
ing site track 1s shown in the sketch and
its intersections with the tracks of the
various return orbits locate the landing
site inertially at the time of landing.

It is evident from this sketch that the
total geocentric angle from the Moon to
landing increases with landing azimuth,
from a value of x + Dy + D, to 2x +ODM -
D% 088 landing azimuth variles frgm 0" to
1807. The total change is n - . If . .

bhe return flight timi ond orbita?Ltrue Sketch (d).- Effects of landing azimuth.
anomaly were fixed, the increase in total geocentric angle with landing azimuth
would require an equal increase in entry range angle by equation (9a).

Superiunar
point

Although the return flight time is not fixed, it can be shown that the change
in true anomaly is comparatively small, with the result that the increase in
total geocentric angle does, in fact, require an almost equal increase in entry
range angle. It is evident from the sketch that the landing site rotates haliway
around the celestial sphere as the landing azimuth is increased from O to 180
and the time of landing must therefore increase by half a sidereal day with an
equal increase in return flight time. This increase in ©light time is effected
almost entirely by an increase in orbital true anomaly, but an increase in Tfiight
time of half a day only requires an increase in true anomaly of about 5 for
flight times in the range of interest (cf. fig. L(b)).
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Two points are noted from this discussion; first, the required entry range
increases with landing azimuth; it is a minimum for polar orbits with a due-north
heading at landing and a maximum for polar orbits with a due-south heading at
landing. In the case of landings at Edwards AFB, the necessary entry range capa-
bility for operations over thg entire month is under 10,000 nautical miles for
landings at azimuths up to 907, that is, for approaches from the soubthwest. TFor
approaches from the northwest the entry range requirements will exceed 10,000
nautical miles over some portion of the month.

Second, the return flight time increases locally with landing azimuth, being
half a day longer for polar orbits with a due-south heading at landing than for
orbits with a due-north heading at landing.

The variation of entry range and flight time with landing azimuth also
depends on the landing site latitude. The trends noted in the preceding discus-
sion apply to landing sites at latitudes greater than the declination of the
Moon. In the case of Edwards AFB and other sites in the Southwest United States
above the maximum declination of the Moon, these trends occur at all times of the
month. The opposite trends would obtain for landing sites in the southern hemi-
sphere at latitudes below the minimum declination of the Moon.

The longitude and latitude of the atmosphere entry points for all the
solutions departing the Moon at O hr, 3 Feb. are given in figure 11(a). There
are three lines of solutions corresponding to landing times one day apart. Entry
locations for departures at several times of the month are given in figure 11(b)
where only the solutions having 2.5 to 3.5 day Ilight times are given. The two
constant inclination lines in this figure give the Zocus of entry points for min-
imum and polar inclinations. These lines are very nearly the track of the
vehicle over the Earth during the final portion of the return trajectory for all
orbits having the corresponding inclinations.

CONCLUSIONS

An analysis has been given for computing trajectories returning to a
specified landing site, assuming a two-body description of orbital motion and an
approximate flight time - entry range relation for the entry phase. The method
of' solution was programmed for an IBM 7090 digital computer and general results
covering returns from the Moon to Edwards AFB for the month of February 1960 were
obtained. Generally, the trends reported here will be the same for other time
periods and landing sites in the Southwest United States.

The trends indicated are as follows:

L. For a specified orbital inclination angle the times of landing are
restricted to a short period once each day.

2. The return flight time is a function of the time of leaving the Moon.
For a specified orbital inclination angle, launch into an orbit with a specified
flight time can take place once a day. Launch at any time requires a one-day
variation in flight time.

16



3. Return polar orbits are of substantially higher energy with respect to
the Moon than minimum inclination orbits.

L. Tt is possible to return from the Moon to a specified landing site at
any time with any desired inclination angle greater than the minimum possible
value, provided the necessary entry range capability is available.

5. Entry range requirements vary over the month, showing a close relation
to the lunar declination. For return to Edwards AFB, the entry range require-
ments are 3,000 to 9,500 nautical miles for minimum inclination orbits and 1,500
to 5,000 nautical miles for polar orbits.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Dec. 10, 1962
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APPENDIX A
LANDING TIMES OF INTEREST

IT a trajectory is to leave the Moon at Ty and the flight times of
interest are limited to the range of values

Tmin < TF < Tpax (A1)

and if the times at which the landing site occupies the correct inertial position
are given by equation (6) of the text as

RAT, - RA1p 4 i _
(i) =~V tum it=----2-L,0 12 ... (6)

then it is necessary to Tind the values of 1 which satisfy the flight time
limits of (Al).

The flight times corresponding to the required landing times are:
TR(1) = T(i) - Ty (7)

Consider the following sketch of the time scale (mean solar time), showing
the reference origin and the points Ty and Ty + T. Between Py and Ty + T there
are (ig - 1) complete
sidereal days (or

RA,-RA
gwwLo:p (io - 1)/w mean solar
o ig=! . days) plus a fraction
W ' w of another sidereal
T_;# ! day. The number of
0 P v Tt T sidereal days from
° Py to Ty + T can be
Sketch (e).- Time scale. cpmputed from
tsidereal = w(TM + 7 - Pp) (a2)

and hence the integral number of sidereal days from Pp to Ty + 7 1is

iy - 1 = INT [w(TM + T - Po)l (A3)

where INT(y) truncates y to the next lower integer value as explained in the
text. Finally, the minimum value of 1 which gives a flight time in the range
of interest corresponds to the lowest value of TL(i) which is greater than

TM + Tyips Whence
RAp, - Iu‘LO‘!
— 4+ 1

imin = INT [w(TM + Tmin) - 20w (AL)



Similarly, the maximum value of 1 which gives a flight time in the range of
interest corresponds to the highest value of TL(i) which is less than
Ty + Tyaxs OF

| RA, - RALO"J (45)

imax = INT [N(TM + Tmin) 2w

The landing times of interest are those given by equation (6) with values of 1
in the range.

ipin £ 1 < imax (AG)

i an integer
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APPENDIX B

ORBITAL FLIGHT TIME FORMULAS

A subroutine which computes orbital flight time was necessary in the
computer program for point-return trajectories. The most convenient subroutine
i1s one that accepts values of perigee radius, departure point radius, and true
anomaly, and computes the orbital flight time from the departure point to vacuum
perigee. The perigee radius for the return trajectories is fixed at 6,430 km
and the departure point radius is, for trajectories returning from the Moon, the
distance to the Moon. Tais distance varies from about 356,000 km to 407,000 km
as shown in figure 4(c) for February 1966. Although the usual flight time formu-
las can always be used, a more convenient set, as derived below, was used with
the computer program.

The solution orbit will be one of the possible orbits which have the
required value of Rp and pass through a point of radius, Ry For Keplerian
orbits

R = P
M= T ¢ cos oy
o P (B1)
P" 1+ e
Define the parameter R
P
o= Ror (B2)

This parameter has a value from 0.0158 to 0.0180 for orbits leaving the Moon. It
follows, after dividing the equations of (Bl), that all the possible orbits are
described in the formula

1l + e cos Om

1+ e
or
Ll -p
® = T cos oy (B3)

Some points of interest given by equation (B3) are:

i) minimum eccentricity

_Ll-p
emin T+ o at GM

ii) parabolic orbits

I
=

e = 1.0 at GM

cos™(2p - 1) = ¥, ? (BY)
111) minimum true anomaly

e - ® at 6y = cos™(p) = ¥o
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The angles V¥, and ¥5 are taken between zero and n. The points given in (BL)
give the following restrictions on some of the orbital parameters for orbits
passing through Ry and having tne reguired value of Rp:

- 3
= Pce<w
1 + o
Vo < 6y <V, hyperbolic orbits (e > 1)
Oy = ¥, parabolic orbits (e = 1)
> )
v, <Oy <ox - ¥, elliptic orbits (e < 1)
5, < ¥,
’ no orbits possible
O 2 2n - ¥y J

Restrictions on other orwvital parameters can be derived from (B5) and other
orbital relations. The restrictions of (B5) are illustrated in the sketch below
and a plot of these same parameters s given in Tigure L(b).

TF
e Hyper-
No bolic Eiliptical |
orbit
L
)
=t had
> E .e
= [=] [=]
kS a °
> Z
[ =4
Q
(54
W p—1.0
— _p \
l+p
- 0
0 2 _‘#l
]
True anomal
0 ¥, v ooT emy, y

True onomaly
Sketch (f).

The eccentric or fhyperbolic anomaly at Ry can be computed as a function of
the true anomaly.

cosh F for V¥- <86

IA
re

hypervollec orbits

[

(B)

i(oos 8+ 1 - p)
e
cos B for ¥, <6

IA
=

elliptic orbits
O<F, E<nx
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Although equation (Bi) is correct for the entire range of elliptic orbits

(¥, <9 <2rx - Yl), the range of true anomaly discussed here is limlited to values
below n  since higher values correspond to orbits on which the vehicle would
leave the Moon headed away from the Earth.

A Tormula Tor [Llight time can be given in terms of any three independent
orbital parameters by substitutions of the appropriate orbital relations into
Kepler's equation for flight time. In the present case, the desived result is:

RS
M

TF = —~— (p - cos 0)] B (B7)
HE

where 2 is computed from the following eguations:

E(1L - pcos B) - (L -p) sin E
3/2

elliptic region
(1 - cos E)

F(1 - p cosh F) - (1L -p) sinh F
(cosh F - 1)3/2

hyperbolic region

For parabolic orbits, where e = 1 and E, F = 0, both expressions for [ have a
singularity. A nonsingular expression for £ 1in the region near the parabolic
condition is readily obtained by expansion of the trigonometric [lunctions to give
a series expression for B,

oo (en+ 3

p=A2 — (BO)

. 3/2

1+ 2(>

Ly o

= (en+ 1)y
IR
STl o<y,

For computation, (BQ) may be used for all orbits provided a sufficient number of
terms is taken in the series to give the required accuracy.

In particular, for parabolic orbits, equations (BL), (B7), and (B9) give

Ri; + ZR
M P [2
= —_— J‘(RM - Rp)

TF
3 E

The Tlight time subroutine accepts values of Rp, Ry, and 0 and uses
equations (B2) and (B") with (B7), (B2), or (B9) to compute the Tlight time.
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APPENDIX C

VARIATTON OF LANDING TIME WITH TIME OF DEPARTING THE MOON

FOR FIXED INCLINATTION

From equations (5) and (&) of the text it follows that

= + -
dTM 2nw dTM dTM dTM ( CL )

ars, 1 /dRAy  adY¥y d\yM>

where the derivatives are to be computed for fixed landing azimuth and, hence,
fixed inclination. Equations (2) and (3) of the text may be used to derive:

a4y
L,
ATy
Dy
ayy, dTm
dTM - cos T (02)
M cos® Dy | _ cos® T
cos? Dy

where m = *1, depending on which of two possible heading angles at the Moon 1is
to be used.

m=+1 for O <Ay <x/2
m=-1 for n/2 <Apzy <n

The Moon in its orbit is considered next; the Moon's orbit ig assumed to lie in a
single plane and the general formulas ol equations (1) of the text are applied.
Noting that the right ascension of the Moon, RAy, is related to the equatorial
angle of the Moon from its nearest ascending line of nodes, ¥y, by the addition
of a constant, then by analogy to the second equation of (c2) above,

ARA; ay cos IM 1 y .
mo_ Shae 1 dDy (3)

T A cos® Dy /l cos? Iy
cos® Dy

n =+l for Dy increasing

n = -1 for Dy decreasing

Iy = inclination of Moon's orbital plane
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It 1s convenient to iIntroduce the orbital angular velocity of the Moon, GM,
in the above expressions in order to simplify the results, and because GM is
nealﬂx constant. It varies about 2 /day around a mean value of approximately
13 /dav over the lunar month. The following relations among the angles describing
the Moon's orbit occur from spherical trigonometry (eqs. (1d) and (le) of the

text):
sin Dy = sin Iy sin Oy

cos ¥y cos Dy (chy

1

cos 9y

wvhere 6Op 1is measured Irom an ascending node. Together with equations (1) these
M g
provide the result

dDy

ATy

I

(c5)

The rate of change of the Moon's declination is a maximum (ndy sin Ipy) when the
Moon is at a node, and is zero at the extreme declinations, *Ty. Egquation (c3)
becomes

dRAM cos II*’[ .
= QM (Cb)

cos? Dy

W

This has a minimum value at a node where (RAM = QM Ccos IM> and a maximum value at
the extreme declinations (RAy = Oy sec Ty).

Finally, the combination of (C2), (C5), and (C7) in equation (C1) gives the
result

dTL éM' Cog II\/I (C082 DI\/[/COSZ II\«I) -1
T, = Zro L= mo (c7)
M T o632 Dy (cos® Dyfcos® I) - 1

where m and n  are *1 according to the circumstances described above.

Equation (C7) may be written in the following alternative form, noting (C6):

Iz 3 Il 2 2 -
JTI,_ Réy, o (cos DM/COS IM\ 1 (c8)
ar,, = 2x - = 2 2

M (cos® Dyfcos® I) - 1

e

Since 2rw 1s the angular velocity of the Earth then (CB8) gives the rate of
change of landing time with departure time as the ratio of the equatorial angular
velocity of the Moon to the angular velocity of the Earth times the modifying
factor in the brackets.
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In particular, for polar orbits (1 - n/2)

dTy,  RAy
dT M - 2nw
or, stated differently,
dRA7,  dRAy
dTy - dTy

This last 1s an expected result from simple physical considerations.
For orbits having the inclination of the Moon's orbital plane (I = M),
equation (C8) becomes

dTy,  Rhy
for DM%IM ﬂ:%(l_m)

Ty, 1 oM
for ‘DM' = Iy Ty, T cos Iy 2nw

more generally, for Iy < I < x/2 then

aTy, RAN
0 < 5, < 2 <—2ﬂw

which has a maximum value of about 0.06. This is the result already expected
from the physical considerations given in the text; if the inclination of the
return orbit is fixed, the landing time changes very slowly with time of departure

from the Moon.
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Figure 2.- Continued.
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Figure 2.- Concluded.
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NASA-Langley, 1963












